Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects.
نویسندگان
چکیده
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe.
منابع مشابه
Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-biodiesel-ethanol Blends on the Performance and Emission Characteristics of a Ci Engine
An experimental investigation is carried out to establish the performance and emission characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive in neat diesel and diesel-biodiesel-ethanol blends. In the first phase of the experiments, stability of neat diesel and diesel-biodiesel-ethanol fuel blends with the addition of cerium oxide nanoparticles are a...
متن کاملThe biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice☆
BACKGROUND Cerium oxide (CeO(2)) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. METHODS Atherosclerosis-prone apolipoprotein E knockout (ApoE(-/-)) mice were exposed by inhalation to diluted exhaust (1.7 mg/m(3), 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (D...
متن کاملBrain suppression of AP-1 by inhaled diesel exhaust and reversal by cerium oxide nanoparticles.
One of the uses of cerium oxide nanoparticles (nanoceria, CeO2) is as a diesel fuel additive to improve fuel efficiency. Gene/environment interactions are important determinants in the etiology of age-related disorders. Thus, it is possible that individuals on high-fat diet and genetic predisposition to vascular disease may be more vulnerable to the adverse health effects of particle exposure. ...
متن کاملThe influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation
The influence of a cerium additive on the kinetics of oxidation and size distribution of ultrafine diesel particles was studied using a high-temperature oxidation-tandem differential mobility analysis method over the temperature range 300–700 ◦C. The addition of cerium to the diesel fuel was observed to cause significant changes in numberweighted size distributions, light-off temperature, and k...
متن کاملA Novel Diesel Fuel Additive to Improve Fuel Properties and to Reduce Emissions
Global air pollution is a serious threat caused by excessive use of fossil fuels for transportation. Despite the fact that diesel fuel is a big environmental pollutant as it contains different hydrocarbons, sulphur and crude oil residues, it is yet regarded as a highly critical fuel due to its wide applications. Nowadays, biodiesel as a renewable additive is blended with diesel fuel to achie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 142 2 شماره
صفحات -
تاریخ انتشار 2014